Package: regclass 1.6
regclass: Tools for an Introductory Class in Regression and Modeling
Contains basic tools for visualizing, interpreting, and building regression models. It has been designed for use with the book Introduction to Regression and Modeling with R by Adam Petrie, Cognella Publishers, ISBN: 978-1-63189-250-9 <https://titles.cognella.com/introduction-to-regression-and-modeling-with-r-9781631892509>.
Authors:
regclass_1.6.tar.gz
regclass_1.6.zip(r-4.5)regclass_1.6.zip(r-4.4)regclass_1.6.zip(r-4.3)
regclass_1.6.tgz(r-4.4-any)regclass_1.6.tgz(r-4.3-any)
regclass_1.6.tar.gz(r-4.5-noble)regclass_1.6.tar.gz(r-4.4-noble)
regclass_1.6.tgz(r-4.4-emscripten)regclass_1.6.tgz(r-4.3-emscripten)
regclass.pdf |regclass.html✨
regclass/json (API)
# Install 'regclass' in R: |
install.packages('regclass', repos = c('https://profpetrie.r-universe.dev', 'https://cloud.r-project.org')) |
- ACCOUNT - Predicting whether a customer will open a new kind of account
- APPLIANCE - Appliance shipments
- ATTRACTF - Attractiveness Score
- ATTRACTM - Attractiveness Score
- AUTO - AUTO dataset
- BODYFAT - BODYFAT data
- BODYFAT2 - Secondary BODYFAT dataset
- BULLDOZER - BULLDOZER data
- BULLDOZER2 - Modified BULLDOZER data
- CALLS - CALLS dataset
- CENSUS - CENSUS data
- CENSUSMLR - Subset of CENSUS data
- CHARITY - CHARITY dataset
- CHURN - CHURN dataset
- CUSTCHURN - CUSTCHURN dataset
- CUSTLOYALTY - CUSTLOYALTY dataset
- CUSTREACQUIRE - CUSTREACQUIRE dataset
- CUSTVALUE - CUSTVALUE dataset
- DIET - DIET data
- DONOR - DONOR dataset
- EDUCATION - EDUCATION data
- EX2.CENSUS - CENSUS data for Exercise 5 in Chapter 2
- EX2.TIPS - TIPS data for Exercise 6 in Chapter 2
- EX3.ABALONE - ABALONE dataset for Exercise D in Chapter 3
- EX3.BODYFAT - Bodyfat data for Exercise F in Chapter 3
- EX3.HOUSING - Housing data for Exercise E in Chapter 3
- EX3.NFL - NFL data for Exercise A in Chapter 3
- EX4.BIKE - Bike data for Exercise 1 in Chapter 4
- EX4.STOCKPREDICT - Stock data for Exercise 2 in Chapter 4
- EX4.STOCKS - Stock data for Exercise 2 in Chapter 4
- EX5.BIKE - BIKE dataset for Exercise 4 Chapter 5
- EX5.DONOR - DONOR dataset for Exercise 4 in Chapter 5
- EX6.CLICK - CLICK data for Exercise 2 in Chapter 6
- EX6.DONOR - DONOR dataset for Exercise 1 in Chapter 6
- EX6.WINE - WINE data for Exercise 3 Chapter 6
- EX7.BIKE - BIKE dataset for Exercise 1 Chapters 7 and 8
- EX7.CATALOG - CATALOG data for Exercise 2 in Chapters 7 and 8
- EX9.BIRTHWEIGHT - Birthweight dataset for Exercise 1 in Chapter 9
- EX9.NFL - NFL data for Exercise 2 Chapter 9
- EX9.STORE - Data for Exercise 3 Chapter 9
- FRIEND - Friendship Potential vs. Attractiveness Ratings
- FUMBLES - Wins vs. Fumbles of an NFL team
- JUNK - Junk-mail dataset
- LARGEFLYER - Interest in frequent flier program
- LAUNCH - New product launch data
- MOVIE - Movie grosses
- NFL - NFL database
- OFFENSE - Some offensive statistics from 'NFL' dataset
- PIMA - Pima Diabetes dataset
- POISON - Cockroach poisoning data
- PRODUCT - Sales of a product one quarter after release
- PURCHASE - PURCHASE data
- SALARY - Harris Bank Salary data
- SMALLFLYER - Interest in a frequent flier program
- SOLD26 - Predicting future sales
- SPEED - Speed vs. Fuel Efficiency
- STUDENT - STUDENT data
- SURVEY09 - Student survey 2009
- SURVEY10 - Student survey 2010
- SURVEY11 - Student survey 2011
- TIPS - TIPS dataset
- WINE - WINE data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:548f2ed1dc. Checks:OK: 5 NOTE: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 21 2024 |
R-4.5-win | NOTE | Nov 21 2024 |
R-4.5-linux | NOTE | Nov 21 2024 |
R-4.4-win | OK | Nov 21 2024 |
R-4.4-mac | OK | Nov 21 2024 |
R-4.3-win | OK | Nov 21 2024 |
R-4.3-mac | OK | Nov 21 2024 |
Exports:all_correlationsassociatebuild_modelbuild_treecheck_regressionchoose_ordercombine_rare_levelsconfusion_matrixcor_democor_matrixextrapolation_checkfind_transformationsgeneralization_errorgetcpinfluence_plotmode_factormosaicoutlier_demooverfit_demopossible_regressionsqqsee_interactionssee_modelssegmented_barchartsuggest_levelssummarize_treeVIFvisualize_modelvisualize_relationship
Dependencies:bestglmcodetoolsforeachglmnetgrpregiteratorslatticeleapsMatrixplsrandomForestRcppRcppEigenrpartrpart.plotshapesurvivalVGAM